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Fast Algorithms for Computing Mersenne-Prime
Number-Theoretic Transforms'’

I.S. Reed
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TDA Engineering Office

It is shown that Winograd’s algorithm can be used to compute an integer transform
over GF{(q), where q is a Mersenne prime. This new algorithm requires fewer multiplica-
tions than the conventional fast Fourier transform (FFT). This transform over GF(q) can
be implemented readily on a digital computer. This fact makes it possible to more easily
encode and decode BCH and RS codes.

l. Introduction

Several authors (Ref. 1 through 12) have shown that transforms over finite fields or rings can be used to compute numerical
convolutions without round-off error. Recently, Winograd (Ref. 13) developed a new class of algorithms for computing the
conventional discrete Fourier transform (DFT). This new algorithm requires substantially fewer multiplications than the
conventional FFT algorithm.

In this paper, a type of Winograd algorithm is employed to evaluate the transform over GF(q), where g = 2P- 1 is a Mersenne
prime. This transform is comparable in speed with that given by Winograd (Ref. 13 and 14).

Recently, the authors (Ref. 15 and 16) proposed that transforms over GF(F,), where F, = 22"+ 1 forn=1,2,3,4isa Fermat

prime, can be used to define RS codes and to improve the decoding efficiency of these codes. Therefore, an FET over GF(q) can
be used to decode RS codes.

In order to use the methods of Winograd for computing the transform over GF(q), a new method for computing every
factorization of the polynomial uP~1- I over GF(q) is developed. Finally, it is shown that continued fractions can be used instead
of the usual Euclid’s algorithm to find the required inverse element of the polynomial over the finite field GF(q).

"This work was supported in part by the U.S. Air Force Office of Scientific Research under Grant AFOSR-75-2798.
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il. Transforms Over GF(q)

Let GF(q) be the finite field of residue classes modulo g, where g = 2P~ 1 is a Mersenne prime forp=2,3,5,7,13,17,19, 31,
61, ... Also let d be an integer that divides ¢ - 1. Finally let the element yeGF(q) generate the cyclic subgroup of d elements, G,;=
(v¥%, ... y971, v9 = 1) in the multiplicative group of GF(q).

The transform over G, is

d-1
4,23 ar  for0<j<d- 1 1)
i=0

where 2,eGF(q) for0 <i<d - 1

By Fermat’s theorem, 2P = 2 mod p. This implies plt, where r =q - 1 = 2P - 2. Also since 27 - 2=0mod 3 or 2, t = 2P- 2 has
the factors 2, 3, and p. The factorizations of the different numbers ¢ = 2P- 2 for p=13,17, 31, 61 are shown in Table 1. A
multidimensional technique will be developed herein to calculate the transform defined in (1).

To perform the transform over GF(q) defined in (1), it is necessary to find primitive elements in the d-element cyclic subgroup
G, in GF(q). To do this, by (Ref. 5), it is shown that 3 is quadratic nonresidue mod g. Thus 3(2P-2)/2= -1 mod q. Hence by the
same procedure used in the proof of Theorem 1 in Ref. 5, a =3 is a primitive element in GF(q). Suppose d = d, +dy...d,_,d,
where d, = 2,d, =3,d, =p, and d;=5,7,9,11,and 13 fori=3,4,...,r - 1. The generator of G4, a multiplicative subgroup of
order d, is evidently v = a4~ 1)/4 where a is a primitive element of GF(q). Also, v/ is a primitive element in G, since (j,d) = 1.

Now 7 satisfies,
d _
¥ =1modgq (2)
But also

2P = 1 mod ¢ (3)

Thus, combining (2) and (3), a generator ¥ of G,; must exist that satisfies

v4/P = 2 mod q 4)
A computer program can be used to find a primitive element y of G, that satisfies (4). By Th. 1, Ref.5, v satisfied

% =-1 (5)

From (4), (5), we observe that integer multiplications by y4/4i or its powers for d; =2 or p can be accomplished simply by
circular shifts instead of multiplications. Hence, a d; — point DFT for d; = 2 or p can be evaluated without integer multiplications.
It will be shown next that a d; — point DFT for d, =3, 5,9, 11, and 13 can be computed by using the Winograd algorithm.
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iil. Mathematical Preliminaries

In the next section the Chinese Remainder theorem for polynomials will be employed to compute fast transforms over GF(q)
of a small sequence. This well-known theorem is stated as follows without proof (see Ref. 17):

Theorem 1 (The Chinese Remainder theorem for polynomial): If m,(x), m,(x),..., m,(x) are polynomials which are
relatively prime in pairs, then the system of congruences x(u) = g(u) mod mju)’i fori=1,2,..., k has a unique solution x(u)
given by

K
x(u) = ), g M)V (1) (62)
i=1
where

mw) = m, () myw) ? .. .m ) ¥

= ml(u)elMl(u) =m2(u)e2M2(u) = ..= mk(u)ekMk(u)

and N(x) uniquely satisfies (modulo m(u)°?) the congruence

MGON ) = 1 mod m (x) * (6b)

To compute the inverse element of M(u), i.e., N(u) required in (6b), let S(u) = M,(u)/m(u). Then, using a procedure precisely
similar to that used for a rational element S = a/q, where aeGF(q), described in Appendix A, it is possible to use continued
fractions to develop a finite sequence of rational approximations to S(«). The recursive formula for the convergents is given by

4P @ py ) W
W7 G, () Fa,_, @) q,@)

(7

where p_ (u) = 1,q_,(4) = 0, poy(u) = a,(u), and q,(u) = 1. The partial quotients a,(u)in (7) can be computed recursively by the
following formula:

Fe_o (W) = ak(u)rk_l(u) + rk(u), deg rk(u) <degr, ,(w)fork=1,2,...,n-1 (8)

where the initial conditions are r_, (u) = mu), r_, = M{u), and r,,_,(u) = r,_, (wa, (u).

By applying Euclid’s algorithm to the polynomial S(u) over GF(g), we observe that S, (u) = Pi(u)/q,(u) will terminate with
S, (1) = Mu)/m(u) when r, () = 0. By the same procedure used in the derivation of Eq. (6A), we obtain

Mi(u)qn_l(u) - mi(u)pn_l(u) = (_1)n+1 ©)

178



There are two cases to consider:

Case 1: If n is odd, then
Mu,_ () + m ) (-p,_ () = 1 (10)

It follows that Nu) = q,_,() and ngu) = -p,_,(u) are solutions of Mu)N(u) =1 mod myu) and m(u)n u) =1 mod
M(u), respectively.

Case II: If n is even, then
M) (-q,_, @)+ m) p,_ @)=1 (11)

Thus, Nfu) = -q,_, ) and nfu) = p,_,(u) are solutions of Nw)M(u) =1 mod myu) and m u) nu) =1 mod M(u)
respectively.

From (9), we see that it is necessary to compute the inverse element of ¢ in GF(g). To do this, let S =a/q. This inverse
element is given by (A-7) in Appendix A.

The remainder of this section is based on ideas due to Winograd (Ref. 13). Let X(u) = Xy + X u + X,u? +... + X, u" and
Y(u) = Yy + Yu+ Yu? +...+ Y u" be two polynomials where X, Y, eGF(q). It is well known that the linear convolution
“of X(u) and Y(u) is the set of coefficients of the product of X(u) and Y(u), ie., T(u) = X(u) * Y(u). By (Ref. 13), the
number of multiplications required to compute the coefficients of 7(u) can be obtained by using the Chinese Remainder
theorem for polynomials over GF(g).

To show this, let us choose m + n + 1 distinct scalars, i.e., @y, @, ..., @y, Then T(u) with degree n + m is equal to

T()=X(u) - Y)mod (u-ay) - w-o)...(u-a, ) (12a)
or
m+n—1 m+n—1
T(u) = X(u) * Y(u) mod H U-a)+X Y H (u- o) (12b)
i=0 i=0
Since (u - a;) fori=0,1,...,m+ n are relatively prime in pairs, then by theorem 1, the system of congruences,
T, (u)= X(ak) . Y(ak) = T(w) mod (u - o) fork=0,1,2,...,n+tm
has a unique solution 7(u) given by
m+n

Tw)= 35 T (M, @V, ()
k=0
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where
mu) = m, (m, @), . .. m @)
=@u-a)@-a)...(u-a, )
= moGOMo(0) = m OM, @) = .= m, . @M, @)

and NV, (1) uniquely satisfies (module m, («)) the congruences

Mk(u)Nk(u) =1modm (u) fork=0,1,2,...,m+n

It can be shown that T(u) given by (12a) can be reconstructed by

IT @-e)
m+n /::0
Twy= 2| Zh— | X)) - V(e (13a)
k=0 I—I (O‘k— O‘j)
j=0
j#k ]

If for example, one chooses «; = *2" for n 2 0, then each T, (u) = X(a)) * Y(a;) can be computed with one multiply.
Similarly, T(u) given by (12b) is given by

Fm+n——1 ]
H (- o)
min-1 J=0 m+n-1
= j#k (13b)
T(u) I;) mtn-1 X(ak) ) Y(ak) + Xn Yn E (u - ai)
§ O
j=0
The cyclic convolution of (X, X,,..., X, _;)and (Y,, Y¥,,..., Y, ) can be expressed as
Yo Xo X, X2 Ko Y
W
1 X X, .. X _, X, Y,
=] - - (13¢)
\Iln—l Xn—l XO ’ Xn—3 Xn—2 Yn—l
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As noted by Winograd, the cyclic m X n matrix in (13c) can be regarded as a “multiplication table” for the groups Z,, of the
integers module n. If n=n, « n,, where n, and n, are relatively prime, then by the Chinese Remainder theorem (Theorem 1
above for the integers) Z, is isomorphic to the direct product Z,, X Z,, of groups Z,, and Z,,. This fact is used to prove
that a permutation of the rows and columns of the cyclic matrix in (13¢) exists so that the resulting matrix is partitioned into
blocks of n, X n, cyclic matrices and so that the blocks form a n, X n, cyclic matrix. This is proved in detail in Theorem 1
of Appendix B.

To illustrate the above, let n be 6 = 2 - 3. Since 2 and 3 are relatively prime, by the Chinese Remainder theorem an
isomorphism

k> (k. k,)

exists between an integer ¥ module 6 and the pair of integers k, and k£, module 2 and 3, respectively, from the relationship,

k=k 3 +k,4 (mod 6)

Now suppose one has the cyclic convolution,

v\ (X, X X, X, X, X\ [r,
v\ Ix x x x, x, x \[y,
vl lxxxxxx ||,
v Tl x,x, x,x x x, |\ v, (139)
v, | \x, x. x x x x|\,
vl \x,x x x,x x,/ \r

By Theorem 1 in Appendix B, there exists a permution defined by

7720(_162((0,0)(0,1)(0,2)(1,0)(1,1)(1,2))( 0o 1 2 3 4 5)
o 4 2 3 1 5 ) \©0@©1)©2) 101112

_{o12345
042315

of the rows and columns so that the above cyclic matrix can be partitioned into blocks of 3 X 3 cyclic matrices, such that the
blocks form a 2 X 2 cyclic matrix. In other words, let the variable Yy = Yk, x,), X T X(ky,kp) and ¥y = Vg, k) be
rearranged in such a manner that the first component k, of the index pair (k;,k,) is set to 0 and component &, is in
ascending order, and that secondly component k; is set to 1 and component X, is in ascending order. The variable Xk, «,)
for (13c) are then rearranged in the order:

X(O,O)’ X(O,l)’ X(0,2)’ X(I,O)’ X(l,l)’ X(I,Z)
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or in the variables X, are in the order:

Xo’ X4’ Xz’ Xs’ X1' Xs

If such a rearrangement is made on variables Y, X, and ¥, respectively, the cyclic convolution (13d) has the form,

v, X0X4X2X3X1X5 Y,
v, X4X2X0X1X,5X3 Y,
v, ) X, X, X, X, X, X, Y,
v, X, X, X, X, X, X, Y,
v, X1X5X3X4X2X0 Y,
v Y

X5X3X1X2X0X4

(13e)

This cyclic matrix has been partitioned into 3 X 3 blocks of 2 X 2 matrices. This technique, due to Winograd, of partitioning

cyclic matrices, will be used repeatedly in the next section.

It is also readily established that ¥, of the cyclic convolution (13c) is the k-th coefficient of the polynomial

T(w) = X)Y(u) mod (u” - 1)

where
- n—1
X(u)—X0+X1u+...+Xn u
and
— n—1
Ywy=Y,tYut...tY u

Since u”- 1 can be factored into polynomials over GF(q), i.e.,

k
u" - 1= &®

=1

such that

(8,@), g) = 1

(13f)

for j # i, then, by the Chinese Remainder theorem, the coefficients of T(x) mod (1" - 1) can be computed from the system of

congruences defined by
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T(u) = T(u) mod g(u) fori =1,2,...k (14)

To get the factors, g;(u) defined in (14), first factor u”- 1 into a product of irreducible polynomials. Each g,(u) is a
product of one.or more of these factors. Assume that « is an element of order n possible in some extension field of GF(q).
Then af, o, a2, ..., o ! are all roots of y” -1 over GF(q). By Th. 4.32, Ref. 17, it follows that

u - 1= I;[ 0 D) (15)
dln

where Q(@)(u) is a polynomial whose roots are all elements of order d. Q@ (u) is called the cyclotomic polynomial. By
Th. 4.33, Ref. 17, the cyclotomic polynomial is given by

0Dy = IT @ - 1p@ (16)
d
kld
where u(d) is the Moebius function defined by
1 ifd=1

u(d) = S (-1)* if d is the product of k distinct primes

0 if d contains any repeated prime factors.

If nis a factor of ¢ - 1 = 2P -2, ihen one can find an element « of order n in GF(g) such that a®, al, ..., a1 are
elements in GF(q) and roots of u” - 1. That is,

n-1
ut - 1= Z (u - &), where &’eGF(q)
i=0

Otherwise, one needs to compute the factorization ot the Q@) (u) into irreducible factors. To achieve this, if « is a root of
Q@(u) with degree ¢, then « is an element of order d in some field of characteristic g. By Th. 4.408, Ref. 17, &P’ for i = 0,
1,2...., 2~ 1 are all roots of Q(@)(u). Suppose B is one of these roots. There are two cases to consider:

Case I: 1f g =1 mod n, then $ = mod q. By Th. 4.407, Ref. 17, 8 is an element in GF(g), thus, the factorization of Q(@)(u) is

9-1
Q(d)(u) = Z (u - ozi), where a; eGF(q)
=0

Case II: If ¢ # 1 mod n, then f2 #  mod g. By Th.4.407, Ref. 17, this implies that § ¢, GF(g). Thus, Q@) (u) is an
irreducible polynomial over GF(g).
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IV. Winograd’s Algorithm for Computing the Transform over GF(q)

The discrete Fourier transform can be defined by

d-1
A4, = a, (17a)
=0
and
d-1 .
A, =a,+ da v forj=1,2,...,d-1
=1
or
A=B+tla, = Wa + Ia (17b)
where
b, 4y
b, 4,
= = ij =
B ) w (7 )i,]'¢0 ) a
by Qg1

and I is a unit matrix. If d is a prime, ie., d = p, one can find an element a eGF(p) which generates the cyclic subgroup
of d -~ 1 elements, so that a permutation or substitution o can be defined by

1,2, ... p-2,p-1
0:
a, 0%, . P P =

Using the above permutation, one can permute the indices of B, defined in (17b), so that the matrix W = (Yoo, . is
cyclic. That is,

-1
Ba(j) = Z 250 DD forj=1, 2,...,p~1
i=1

or
B =Wa (18)
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where

o(1)

Ba(2)

s W E3 (70(1)0(]))1 %0

S]]
]

a(p-1)

and

ao(l)

95(2)

1S
Il

Z5(-1)

From (18), By is a cyclic convolution of Qg (p—j) and v forj=1,2,...,p- 1. Thus by the last section Eq. (18) is
the set of coefficients of

p—1 p—1
T() = (Z aa(p_i)ui‘ l) (Z oDy l) mod uP~1 - 1

i=1

Using the algorithm for factoring the polynomial 4~ 1 over GF(q), described at the end of the last section, one can factor
uP~1-1 over GF(g) into irreducible relatively prime factors. That is,

k
wt-1=1] g (u), where (g (1), g].(u)) =1fori#j

=1

After computing the residues of T(u) mod g(u) for i = 1, 2,... k, the Chinese Remainder theorem can be used to evaluate
T(u) with these residues. If d = p” is a factor of ¢, where p # 2, the number of integers relatively prime to p” is (p - 1)p"~ 1.
In this case, by Ref. 18, a set

r—1
{7, yi, .y T s 1}
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in GF(g) can be found which is a cyclic group. Thus, by a procedure similar to that used to compute the above case ford =p, a

P’ point DFT can be obtained.

Now consider a d;-point DFT over GF(q) for d; = 3 or 5 or 7 or 9 or 11 or 13. For a 3-point DFT over GF(g), it is
straightforward to show that the number of multiplications used to perform this transform is 2. Consider d; = 5. Since 2 is a

primitive element in GF(5), the permutation o is given by
(l ,2,3, 4)
77\2,4,3,1

using the above permutation, the matrix B in (17b) is

B=wa
where
bocry 25(1)
|| _ o 25(2)
B= W= (70(1)0(1))_ . anda=
b I,j#0 a
a(3) a(3)
bocay o4
More explicitly B is
b, 7Y e,
byl [Pt e
b, 77N | e
b, ot ) \e

where v is a 5th root of unity in GF(q). T(v) in (19) is obtained by computing the set of coefficients of
T(w)=Xu) - Y)

=( + ¥+ %%+ ) - (a1 tau +a4u2 +a2u3) mod u* - 1=@- 1) (u+ D@+ 1)

m(w) = = 1) @+ 1) @2 + 1) = m, (am, @ym )
= m, GOM, () = m, M, (@) = m (W ()

186

(19)



The system of congruences T(u) = T(u) mod mfu) for i = 1, 2, 3 is given by
T\(@)=X(1) - Y= +9* +7> +9) - (2, ta, +a, +a)
E—(al ta, ta, +c12)EC1 mod u - 1,
L@W=XC1) - YCD=E -1 471 @, - a, +a, - a)

EC2 mod u + 1,

and
T, () = X(u) * Y(u)
= -Nu+r -] - ey - g,)ut (e, - a,)]
= [(au + b) * (cu + d)] mod u? + 1 (20)
where

C,,C,.a,b,c,deGF(q)
In order to compute (20), by Eq. (12b),
B@) = (au + b) (cu +d)

=(au+tb)(cutd)ymodu(w+1)+a-cu(w+1)

R(u) = (au + b) (cu + d) mod u(u + 1)
Then,
Rl(u)Eb . a?EK1 mod u,

Rw)=(b-a)-(d-c)=K, mod u + 1,

where K |,K,€eGF(q). Using Eq. (6a) this yields
Ru) = K +&, ~K)u
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Thus,
Bu)=K, + (K, - K, +K)Ju+Ku? where K, =a-c
Hence,
T,)=(K, - K)+ (K, - K, +K)u
=C, tCuu mod u® + 1

where

C,=K -K,and C, = (K, - K, +K,)
Using Eq. (6a), T(u) is

T(u)=2772(C, - C, - 2C > +(C, +C, - C,)u* +(C, - C, +2C u + (C, +C, +2C,)
=bu’+bu’ +bhutbh,

It follows from this example that the number of integer multiplications used to perform a 5-point transform is 4.

For d; = 7, the permutation ¢ is given by

(1, 2,3,4,5, 6,)
97\3,2,6,4,5,1

Applying the above permutation to (17b), one obtains B = Wz as

b, N e

b, AR ST SISl | 'R

be AN AL |
= 5 1 3 2 6 4

b, VoYL YLYL YLy Y e,

by o e

b, 720 ey

where <y is a 7th root of unity in GF(q).
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In the last section it was mentioned that there exists a permutation 7 of rows and columns so that the above cyclic matrix
can be partitioned into a 2 X 2 block matrix of 3 X 3 cyclic blocks in the manner given in (13e). This permutation of the
rows and columns is

b 2,1.4.5.6.3

3 Y'Yyt a,
b5 717472767375 ‘15
b6 747271737576 aé
= 2 14 (21a)
b, Yreriviyly a,
b, YOy 3y Sylyty? a,
b, Y3570yt 41 a,
This has the form
E, A B))g A+B)Y (Y, +Y )+ (- B)(Y, - )
= :2—1
E, B A]\y, (A+B)(Y, +Y,)-A-B) (Y, -7Y,)
_(D+E
= op-1
2 (D_ E) (21b)

Since 4 and B are cyclic matrices, it is evident that the matrices 4 + B and 4 - B are also cyclic matrices. In (21b), D is
defined as

dO XO Xl X2 YO
p=la |=|x, X, X, Y, 2)
d2 X2 XO Xl Y2

This matrix can be obtained by computing the set of coefficients of
T) = (X, + Xgu + Xluz) (Y, + Y u+ Youz) modud - 1=(- D)@ +u+1) 23)

The system of congruences, given in (23), is

Tl(u)=(X0+X1 +X2)'(YO+ Y + Y2)EC1 mod (u - 1)

and
T2(u)E [(XZ—X1)+(X0—X1)u] . [(Y2 - Yo) +(Y1 - Yo)u]
EC2+C3uM0du2+u+l
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where C,,C,,C3€GF(q). By the same procedure for computing Eq. (20), T,(u) can be obtained, using only 3 multiplications.
By (6a), T(u) is given by

Tw)=[371(C, +C,+C)-C,1+[371C, +C, + C)-C,lu + B, +C, + Cle?
=d, +du+du’ (24)

In a similar fashion matrix E, given in (21b), can also be obtained. Thus, the number of multiplications used to perform a 7-point
transform is 8.

Consider d; = 32 Since the integers 1, 2,4, 5, 7, 8 are relatively prime to 9, the permutation o is defined by

1,2,4,5,7,8
o= 25)
2,4,8,7,5,1

Rearranging the rows and columns of B in such a manner that the elements of the matrix with indices relatively prime to 9
form a block, one has,

b, AR TR LE TP LY LIV LAY RL IOV RE IV AL a,
b, Y211 4272 204 205 4207 4208 203 216 ,
b, YL 4B gATA (805 AT (AtB 403 4t6 a,
b yS5TL 502 504 (505 (507 (508 (503 506 a
= (26)
b, YT AT T TS (T 708 (703 506 a,
b y8°1 B2 ,Be4  8:5 8:7 [ 8:8  8:3 86 aq
b, y30 1 4302 4304 (305 (307 (308 (303 306 a,
b, YO L 612 464 605 60T 68 ,6°3 66 a

Y, LA R R S SN a,
v, y2L 4202 4204 205 207 1208 a,
| pAL At Atd (des 40T 408 a, on
2 y511 4572 454 505 507 508 a
v, A NV A TV AL SV AL VALV a,
2 Y871 4872 B4  BeS 87 88 a
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Applying the permutations defined in (25) to the indices of (26), one obtains

¥, YA e,
v, v g,
Ve AR AL AR L | R
¥, B R G o & a,
o | V7750057 [\,
’, LA AR A"

By a similar procedure used to partition the matrix (13e) the above matrix becomes a 2 X 2 block matrix of 3 X 3 cyclic
blocks as follows:

v, YL A e,
Ve (AL |
Vs | A A SN A | I o8
v, (AR LA AT | IR
Vs oYY g,
Y, 5 Y e,

Using the same procedure for computing the 6 X 6 cyclic matrix, described previously, we know that the number of
multiplications required to perform (28) is 8. The last two columns of the matrix defined in (26) can be obtained by
computing the following 2 X 2 cyclic matrix,

x Yy a
) _ 3 9)
X, 6 43 a,
The last two rows of the matrix defined in (26) can be obtained by computing the following cyclic matrix
Y1 7\ [e, e, ta,
= (30)
Y2 "y a, tag tag

Note that the computation of (29) and (30) are the same as computing the 2 X 2 cyclic matrix in a 3-point DFT. Hence, the
total number of multiplications used to perform this transform is 12.
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For d; = 11, the permutation o is given by

(1, 2,3,4,5,6,7.8,9, 10)
97\2,4,8,5,10,9,7. 3,6, 1

Applying the above permutation to (17b) one obtains B=Wa, ie.,

b2\ 74,78,75’710’79’77’73’76,71,72\ 2,
b, B 45 410 49 0T 03 06 1 2 .4 ,
b, Y5, y10 49 T 43 46 1 a2 ah B 0,
b, Y10 49 47 o3 46 1 a2 4 B LS a,
b, NIV TN ST I I T 2\,
b, - VLR TV 0 R R Y R T a,
b, R I R N R R LI a,
b, B O N R IR LIV IRV 2
b, I Y IR LIDC IO I I 0
b, Y2yt B yS 10 09 LT 3 6 a,

where v is a I1th root of unity in GF(q). By the same procedure used to partition the matrix given in (13e) and (21a) the
above matrix can be partitioned into blocks of 5 X 5 cyclic matrices, such that the blocks form a 2 X 2 cyclic matrix. That
is,

b, YR S gl T B 46 410 2 a,
b R R B Y . IV T I a,
by T N Y I N L R I e a,
b, Y S I I SN S I a,
b, VIRV . RV B S R et a,
b, - I N R L Y R R e ,
b, Y8, 48, 410 42 4T 3 a5 L1 .9 a,
b, Y6, 410 02 47 B Syl a9 a3 ,
b Y10 42 a7 4B 46 o1 09 08 43 .S a
b, IRV OV SV LI SV S e 0,
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This has a form similar to the matrix (21b), where 4 and B are 5 X 5 cyclic matrices. The corresponding 5-point vectors D
and £ can be obtained by direct computations without using 5-point cyclic convolutions. Thus, the number of multiplications
needed to perform a 11-point transform is 50.

For d; = 13, the permutation o is given by

1,2,3,4,5,6,7,8,9,10, 11, 12
7\2,4,8,3,6,12,11,9,5,10,7, 1

Applying the above permutation ¢ to (17b), this yields

74,78’73’76’712’711,79,75’710,77’71,72
78’73’76,712,711’79’75,710’77’71’72’74
73’76’712’711,79,75,710’77’71’72’74’78
76’712’711’79’75,710’77’71’72’74’78’73
712’7]1’79,75’710’77’71’72’74’78’73’76
711’79,75’710’77,71,72’74’78,73’76,712
79,75,710’77’71,72,74’78’73,76’712’711
75’710’77’71,72’74’78,73,76’712’711’79
710’77,71’72’74,78’73,76’712,711,79’75
77,71,72,74’78’73,76,712’711’79,75’710
71’72’74’78’73’76’712’711779’75’710’77

Yoy v vt Y v L0 S, 0 YT !

where v is a 13th root of unity in GF(g). Then by a similar procedure used to partition the matrix (13¢) or (21a), the above
matrix can be partitioned into blocks of 4 X 4 cyclic matrices, such that the blocks form a 3 X 3 cyclic matrix. That is,

where

£, ABC\ (v,

E1 = |BCA Y1

E2 CAB Y,
b2 b6 bS
i1 7 8
b3 b9 bll

E€2))
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4,.7,9.6 12,.8.1,.5

Y7y y12y8yly
7.9.6.4 8.1.5..12
v v’y vYylySy
A = 6.4.7 B = 1.,5.,12..8
Yty Yiiyity
76747779 757127871
7107117372 02
7117372710 alo
C = Y, =
7372710711 all
7271071173 a3
a6 aS
v a, a4,
= Y:
1 2
a, ag
a9 all

Note that 4, B, and C are 4 X 4 cyclic matrices. Using the same procedure for computing the system given by (23), the above
system can be obtained as

E,=371(C, + C, + C)-C,
E =37Y(C, +C, +C,)C, (32)
E,=31C, +C,+C,)
where
C, =(C+4 +B)(Y0 tY + Y2)
C,=M, -M,=(C-B)(Y,-Y)-A-B)(Y -Y)
C,=M -M,=(C-B)(Y,-Y)-(C-A)(Y,-Y)

In (32), it is evident that the computation of ¢, or M1 or M, or M; requires 5 multiplies. Hence the total number of
multiplications needed to perform the transform defined by (31) is 16.

The total number of integer multiplications of d;-point transform over GF(q) for d;=12,3,5,7,9,11,13, Pis shown in
Table 2.
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V. The DFT Over GF(q) by Multidimensional Techniques

To compute the transform of longer sequences, let d = d,-d,...d, where (dl.,dj) =1, for i #j, and let R; be the ring
of integers modulo d. Then, by using the Chinese Remainder theorem (Theorem 1 for integers), it can be shown that the

direct sum of rings

={(al,a2,...,ar)lakeRd fork=1,...,r}

k

where

(al,az,...,ar)+(ﬁl,[32,...,Br)=(a1+ﬁ',a2+[32,...,ar+[5’r)

and
(a19a27"‘3ar).(ﬁl’ﬁz’""ﬁr)z(al.ﬁ17a2.62"")ar.6r)

is a ring of d elements which is isomorphic to the ring R, 1fd=d, - d,...d, by using the direct sum of finite rings, it is
shown in Ref. 13 that the d-point DFT over GF(q) defined in (1) can be decomposed into multidimensional DFT as follows:

d ~1d,-1 -1
G.j.,0...0)
= 1’1
A(il.fz,...,jr) Z E Z ”(il,i2,...ir)7
i,=0 i =0 i =0
1 2 4
@iy @ @i
d,-1d,-1 a-i i
D T T L
— et Tlippigs e )
11—0 12—0 zr—O
ij ij
y(0.1.0, 022 0.0, DT
—-dl—l d2_1 dr—l iljl i2j2 irjr
ZZ Z"'Za(i,i,...,i)71 Yo T, (33)
i,=0 i,=0 i=o 12 4
where v, = y(0s--- 0,1,0,... 0) with the 1 in the k-th position as a dy-th root of unity in Ry, . Assume the number of

multiplications used to perform d,point DFT for i = 1, 2,... r is m;. Then, by (33), it is evident that the number of
multiplications for computing d-point DFT over GF(q) is equal to

N=d +d,...d_m+d +d,...d_dm_ + . . +dd . .dm,
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A simple example for computing the DFT over GF(q) by using multidimensional techniques is now presented.

Example: 1etg=25-1andd=25-2=2+-3+:5= d,d,d,. Compute the 30-point DFT over GF(q).

Since o = 3 is a primitive element in GF(31), then ¥ is also a primitive element in GF(31) forj = 7, 11, 13, 17, 19, 21,
23, 27, 29. The choice of r = 319 yields

(1)® = (3'%)% =324 =2 mod 31

Thus, one can find the primitive element y = 312 such that y; = y(1,0,0) = 415 = -]y, = y(0,1,0) = 410 = -6y, =
¥(0,0,1) = 46 = 2 are the elements of order 2, 3, 5, respectively. By (33), this FFT algorithm consists of the following 3
stages:

Stage 1:
4 i,
373
1 - (0,0,1)
4 (pipiy) iz=:() a(i1’i2’i3) !
3
4 i
=2 4y ;27 forjy=0,1234 (4
= 1’2’3
13—0
Stage 2:
2 ij
2 - 1 (0,1,0)%2
4 (CEPERY Z:: 4 ("1”'2"‘3)7
i, 0
: 1 ira —
= z:: A (il,i2’i3)(—6) forj, =0,1,2
iy 0
Stage 3:
1 ij
3 (1,0,0y 11

- 2
A G gy .ZOA Gipyiy)
=
1

Gyl yds)

1 P
=3 42 )V forj =0,

110
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In (34), we observe that both 41(; ;, jsyand A3 ;o i.y can be evaluated without multiplications and that A2 i) 18
a 3-point DFT over GF(q). By Table 1, the number of multiplications used to perform A% g forj, =0,1,2is 1. This
requires a total of N =26 + 0 + 10 + 1 + 15 + 0 = 10 integer multiplications modulo 31 for evaluating (30).

For most applications to digital filters, the two most important Mersenne primes are 231 -1 and 26! - 1. The number of
real integer multiplications used to perform a DFT over GF(q) of d =2 - p - r,, where ry=5,7,9,11,0r 13 forg = 23t -1
and ¢ = 261 -1 is given in Table 3. The present algorithm, and Winograd’s new algorithm (Ref. 13) are compared in Table 3

by giving the number of real multiplications needed to perform these algorithms. These results for Winograd’s algorithm come
from Table 2, in Reference 13.

In Table 3, one can see that the transform over GF(q) appears comparable in speed with that given by Winograd (Ref. 13).
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Table 1. Factorization of the integers 2”— 2

2 -2

13
17
31
61

32:2+5-7+13
23517257

232.7+11-31+331"151
2-32+52.7+171+13°31+41+61-151-331-1321

Table 2. The complexity of transforms over GF(q)

of small sequences where q = 2 P_1q

No. of Integer

4; Multiplications
2 0
3 1
5 4
7 8
9 12
11 50
13 21
r 0

Table 3. The complexity of the transform over GF(q) where g = 2%~ 1 and q= 2% -4

No. real integer multiplications

No. real integer multiplications

No. real integer
multiplications of

d of transform over GF(23! ~ 1) of transform over GF(261 - 1) aﬁ?r(i)tglrx?r?fso?i:,al
data
60 72
62 0
120 144
122 0
168 216
186 62
240 324
310 248
366 122
420 648
434 496
504 936
558 744
610 488
806 1302
840 1296
854 976
1008 2106
1098 1464
1586 1952
1674 2790
2520 5616
3348 5490
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Appendix A

Let @ € GF(q), where (g,9) = 1 and also let S = a/q. In this Appendix, it will be shown that the inverse element of a can be
obtained by using continued fractions.

If S = a/q, where a ¢ GF(q), using BEuclid’s algorithm, i.e.,

r,o,Tar tr,0<r, <r

k-2 “kk-1 Jfork=12,...,n-1 (A-1)

k-

with initial conditions r_, = ¢q, ¥_, = a and r,_, = r,_,a,, one generates the sequence of the partial quotients, a,, a4, ...,
a,. By (A-1), § can be developed into a continued fraction.

S=ay+(@ +( g, v )ty Jhk<n (A2)
By setting a; = O in (A-2), one can determine a kth order approximation to §, which is called a convergent,
Sp=agt@ +(...(...@)".. )" oy

From (A-1), 8, * S,,..., 8, ... will terminate with S, since r, = 0. Thus, S, = a/q, where n is a finite number.

A recursive formula for convergents is generated as follows:

o %
0 1 qo

aa t1 ap +p 4
S=a+—1=1° _ 170 1 _%

b0 e a '1+0_a1q0+q_1 4—1

_ 1 _(a1+1/a2)p0+p_1_a2p1+p0_p2
2 v 1 @ tlea,va a4, ta, q,

1 g

2

The recursive convergents are defined as

_ WP L N =ﬁ

(A-3)
gl Y, 4

whe1rep_1 = l,qn1 =0,p0=a0,andq0= lfork=12,...,n
Let

L =Py ~ 4 Py
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By (A-3),
L =P, - UPy—y = 1y (A4)

Sincz Iy =Poq_y -~ qgp_; = ag * 0 - 1 + 1 = -1, one has by (A4), I, = -1, = 1. With the above result, one has I, =
(-1)**1 1t follows that

Pry_y ~ @Py_y = D** fork >0 (A-5)
If n =k, then S, = p,/q, = a/q. Thus, (A-5) becomes
aq,_ , ~qp,_, = C1)y"*! (A-6)
It follows from (A-6) that the solutions of « x = 1 mod g are given by
x=gq,_, mod q if nis odd,
x=-q, , modq if nis even (A-7)

In order to determine an upper bound on the number of partial quotients to form a continued fraction for alg, 1 <a<q,
the following lemma and theorem are needed:

Lemma I: Sequence {q, }defined in (A-3) as a function of ay, ay, ..., a increases most slowly fora, =a, =...=gq, =1
for all k.

Proof: By (A-3),q, = G-y ¥ gy, Where g, > 1 for all k and g, = a,. g, is a minimum for ¢, = a, = 1. For purposes of
induction, assume the theorem is true for all a < k < n, i.e., a, ,Mif"aqu is achieved fora; =a, =...=a, =1 fork<n
Now

= +
qn+1 an+1qn q

n—1

so that

and the induction is complete.
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Definition: The number b, is called a Fibonacci number if b, = b, _, + b, _, with by =1,b, = 1.

n—

Theorem 2: Let b, be a Fibonacci number. If b, < p < b, then, the upper bound on the number of partial quotients
needed to form a continued fractions for a/g, 1 <a <gq, is n.

Proof: 1f 1 =a; =a, =ay...,thenqy =1,49, = Lg,=1+1=2,9;3=5q,+q,=2+1=3,q,=3+2=5,etc. These
are the Fibonacci numbers, b, for (n =0, 1, 2,...). Thus, if g, = ¢ is a Fibonacci number, then a,=a,=...a, = 1. Thus,
by lemma, the largest value of # is achieved.

If g, = q for b,_, <q <b,, then, by the lemma, b, <gq, =q < b,. Hence k < n, and n is the upper bound of partial
quotients to form continued fractions for a/q, 1 <a <gq.

A simple example is now presented for finding the inverse element in GF(g).

Example: Let GF(q) be the field of integers modulo the Mersenne prime ¢ = 27 - 1. Find an inverse element of 19 in
GF(127).

Let @ = 19 and let § = 19/127. From the tabular form (Table A-1) when k = n = 4, one observes r, = 0. Thus, § =S5, =
19/127. Hence, q; = 20. By (A-7), @' =-20 = 107 mod 127 is the inverse element of 19. Since by =5<q,=127<by,
= 144, by Theorem 2, the upper bound on the numbers of partial quotients is 11.
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Table A-1. A computation of convergents to a continued fraction

Tk-2 "9 " " Pr=, P +Py UG =0 Oy, S, =p./a,

B W N

19=0-127+19 0 19 p0=0-1+0=0=a0 q0=0-0+1=1 SO=0
127=6+-19+13 6 13 p1=6-0+1=1 q1=6-1+0=a1 S1=1/6
19=1-13+6 1 6 p,=1-1+0=1 q2=1-6+1=7 S2=1/7
13=2-6+1 2 1 p3=2-1+1=3 q3=2-7+6=20 S3:3/20
6=6-1 6 0 p4=6-3+1=19 q4=6-20+7=127 S4=19/127
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Appendix B

Let @ and b be relatively prime and let 4 be a cyclic ab X ab matrix. In this Appendix, it will be shown in the following
theorem that there exists a permutation 7 of the rows and columns so that A can be partitioned into blocks of b X b cyclic
matrices, such that the blocks form a ¢ X a cyclic matrix.

Theorem I: Let a and b be relatively prime. Let A be the cyclic ab X ab matrix given by

A 0<xy<ab

(x,») =f(x+y mod ab)’
If = is a permutation of {0,1,..., ab- 1}, let

By = Anym)

Then there exists a permutation 7 such that, if B is partitioned into & X b submatrices, then each submatrix is cyclic and the
submatrices form a @ X a cyclic matrix.

Proof: Let Z, = {0,1,...,n - 1} be the additive group of integers modulo n. By the Chinese Remainder Theorem, the
mapping a: Z,,~Z, X Z, given by

a(x) = (x mod ¢, x mod b), xeZ ,
is an isomorphism. Define also the mapping §: Z,,~Z, X Z, given by

X—-V

B(x) = (u= 5 ,vExrnodb)

for xeZ,,. Then § is a one-to-one and onto mapping, and §~1(u,v) = bu + v, ueZ,, veZ,.

Let m = o~ 1. Then 7 is a permutation of Z,,. Let B,,ijeZ,, be the (/)M b X b submatrix of B. Then for v,weZ,,

i

Bii(V’W) = B(bi+v, bj+w)

=B
@ i, 5716wy

=4 -1 —1
w8 )8 Gow))

=4
CER RO IRIAD))

((a" (@, v)+a" (G, w)) mod a-b)
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Since o1 is an isomorphism

B0m) =1 _

(a 1((i+/’) mod g, (vtw) mod b))

If we fix i and j in the above eq., it is evident that the (ij)th » X b submatrix of B is cyclic matrix. Similarly, by fixing v and
w, the submatrices Bij form a a X a cyclic matrix.

Example: Let a =2, b = 3. Then o(x) = (x mod 2, x mod 3) and o~ 1(,¥) = 3u + 4v mod 6. Also BE)=(@@=(x-»)/3,v=x
mod 3) and §~1(w,v) = 3u + v. Finally 7 = (8 1234 g) or the 2-cycle (14),
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